
Robust Control Toolbox™
Release Notes

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Robust Control Toolbox™ Release Notes

© COPYRIGHT 2005–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

R2014a

Control System Tuner app for automated tuning of control
systems . 2

Step response and LQG requirements for control system
tuning with systune and looptune commands 2

Improvements to TuningGoal requirements for control
system tuning . 3

Improved control system tuning of Simulink models with
systune or looptune functions using slTuner interface
(with Simulink Control Design) . 6

R2013b

Automatic tuning of gain-scheduled control systems with
systune and looptune commands 10

Automatic tuning of discrete-time control systems with
systune and looptune commands 10

Sensitivity, overshoot, minimum and maximum loop gain
requirements for control system tuning with looptune
and systune . 11

looptuneSetup command for switching from looptune to
systune to use additional systune functionality 11

hinfnorm command for computing H∞ norm 12
Some properties of TuningGoal requirements renamed . . . 12
Power iteration method option for structured singular value
computation with mussv . 13

Option to specify feedback sign for stability margin
calculation with ncfmargin . 14

R2013a

Minimum damping requirement for closed-loop poles in
TuningGoal.Poles object . 16

iii

TuningGoal.Rejection object for specifying disturbance
rejection requirement . 16

looptune returns detailed results from multiple random
starts . 16

Additional automated tuning examples 17

R2012b

systune command for multiobjective tuning with soft and
hard constraints . 20

H2 performance, stability margin, pole location, and
disturbance rejection requirements 20

Robust tuning of one controller against a set of plant
models . 21

Option to constrain tuned parameter values and to restrict
some tuning requirements to a frequency band 21

ltiblock.pid2 and loopswitch objects for tuning
two-degree-of-freedom PID controllers and marking loop
opening sites for open-loop requirements 22

TuningGoal.MaxGain and GainLimit property renamed . . 23
Options in hinfstructOptions and looptuneOptions
renamed or removed . 23

R2012a

Parallel Computing Support for looptune and hinfstruct . . 26
Faster and More Accurate H-infinity Norm Computation
Using SLICOT Algorithms . 26

R2011b

looptune Tunes Fixed-Structure Control Systems 28
Control System Tuning for Simulink Models with looptune
or hinfstruct Using slTunable Interface 28

wcgainplot for Visualizing Worst-Case Gains 29
Functionality Being Removed or Changed 29

iv Contents

R2011a

Enhanced Workflow for H-Infinity Synthesis of
Fixed-Structure Control Systems 34

R2010b

New Commands for H-Infinity Synthesis of Fixed-Structure
Control Systems . 36

R2010a

Bug Fixes

R2009b

New Option to Improve Robust Performance by Accounting
for Real Uncertain Parameters . 40

New Command to Linearize Simulink Models with
Uncertainty . 40

New Interface for Simulating Effects of Uncertainty in
Simulink Models . 40

New Command to Model Multiple LTI Responses as One
Uncertain System . 41

New and Updated Demos . 41
Functions, Properties and Blocks Being Removed 41

R2009a

Bug Fixes

v

R2008b

Bug Fixes

R2008a

Ability to Use LOOPMARGIN with Simulink 48

R2007b

No New Features or Changes

R2007a

New Simulink Blocks . 52

R2006b

New Function ltiarray2uss . 54

R2006a

No New Features or Changes

R14SP3

No New Features or Changes

vi Contents

R14SP2

mussvunwrap Is Renamed . 60
New Functions actual2normalized and
normalized2actual . 60

vii

viii Contents

R2014a

Version: 5.1

New Features: Yes

Bug Fixes: Yes

1

R2014a

Control System Tuner app for automated tuning of
control systems

The new Control System Tuner lets you interactively tune SISO or MIMO
control systems modeled in MATLAB® or Simulink®. Control System Tuner
tunes the control system parameters to meet design requirements you specify,
such as reference tracking, disturbance rejection, stability margins, loops
shapes, and sensitivity. You can examine multiple system responses in both
the time and frequency domains to evaluate performance of the tuned control
system.

If you have Simulink Control Design™ software, you can tune a control system
represented by a Simulink model. Control System Tuner can tune most blocks
used to create a control system in Simulink. These blocks include Gain, PID
Controller, Transfer Fcn, State-Space, Zero-Pole, Discrete Filter, and
the LTI System block. Any controller architecture created using these blocks
can be tuned. To access Control System Tuner for tuning a Simulink model,
select Analysis > Control Design > Control System Tuner.

Control System Tuner can also tune a control system represented by a tunable
genss model. Any control architecture constructed with Control Design
Blocks such as ltiblock.pid, ltiblock.tf, or realp blocks can be tuned. To
open Control System Tuner for tuning a control system modeled in MATLAB,
use the controlSystemTuner command.

For more information about using Control System Tuner, see:

• “Automated Tuning Basics”

• “Tuning with Control System Tuner”

Step response and LQG requirements for control
system tuning with systune and looptune commands

New TuningGoal requirement objects allow you to specify tuning objectives
for automated tuning of control systems with systune and looptune.

• TuningGoal.StepResp — Requires that the step response between
specified locations in the control system match the step response of a

2

Improvements to TuningGoal requirements for control system tuning

specified reference system. For details about this requirement, see the
TuningGoal.StepResp reference page.

• TuningGoal.LQG — Specifies a linear-quadratic-gaussian (LQG) goal
for control system tuning. This requirement lets you quantify control
performance as an LQG cost. For details about this requirement, see the
TuningGoal.LQG reference page.

Improvements to TuningGoal requirements for control
system tuning
Compatibility Considerations: Yes

This release introduces a variety of improvements to TuningGoal requirement
objects for automated tuning of fixed-structure control systems with systune
and looptune.

Tuning Goals for constraining dynamics impose implicit
stability constraints
TuningGoal.StableController and TuningGoal.Poles now impose implicit
stability constraints on controller or system dynamics. This allows you to
require poles of the controller or the closed-loop control system to be stable,
without necessarily limiting the minimum decay or maximum frequency of
those poles. Previously, you had to specify finite values for minimum decay
and maximum frequency when using these tuning goals.

Compatibility Considerations

The default values of the MinDecay and MaxFrequency properties
of these requirements have changed. If you have scripts that use
TuningGoal.StableController or TuningGoal.Poles requirements with
default values, update those scripts to explicitly set the finite values you want.

3

R2014a

Property Previous Default
Value

New Default Value

TuningGoal.Poles.MinDecay

TuningGoal.StableController.MinDecay

1e-6 0

TuningGoal.Poles.MaxFrequency

TuningGoal.StableController.MaxFrequency

1e6 Inf

TuningGoal.Poles.MinDamping1e-6 0

Option to limit dynamics constraint to poles in a particular
feedback loop
A new syntax for creating the TuningGoal.Poles requirement allows you to
constrain only the poles of the sensitivity function measured at a specified
location. Use this syntax to narrow the scope of the requirement to a
particular feedback loop.

For example, suppose you have a cascaded-loop control system in which
the inner and outer loops contain loop-opening locations 'InnerLoop' and
'OuterLoop', respectively. The following command uses the new syntax to
constrain the poles of the inner loop sensitivity function:

Req = TuningGoal.Poles('InnerLoop');
Req.MinDamping = 0.5;
Req.Openings = 'OuterLoop';

Req imposes a minimum damping on the poles of the inner loop sensitivity
function measured with the outer loop open. The dynamics of blocks that do
not participate to the inner loop are ignored.

For more information about using this constraint, see the TuningGoal.Poles
reference page.

TuningGoal.Tracking allows specification of peak error
A new syntax for creating the TuningGoal.Tracking requirement allows you
to specify a maximum tracking error for a particular input-output pair in
terms of a response time, a relative DC error, and a peak relative error across

4

Improvements to TuningGoal requirements for control system tuning

all frequencies. These parameters are converted to the following expression
for the maximum tracking error:

MaxError
PeakError DCError


    



s

s
c

c




.

For more information about how to specify tracking error requirements, see
the TuningGoal.Tracking reference page.

Specification of signal scaling in MIMO closed-loop Tuning
Goals
New properties in several closed-loop Tuning Goals allow you to specify
the relative amplitudes of multiple input and output signals in the
loops constrained by the requirements. Use these properties to reduce
cross-coupling in tuned systems when the choice of units results in a mix
of small and large signals.

• TuningGoal.Tracking and TuningGoal.Overshoot now have an
InputScaling property. This information is used to scale the off-diagonal
terms in the transfer function from reference to tracking error. This scaling
ensures that cross-couplings are measured relative to the amplitude of
each reference signal.

• TuningGoal.Gain and TuningGoal.Variance now have InputScaling and
OutputScaling properties. The values you set for these properties are used
to scale the closed-loop transfer function T(s) on which you impose the
tuning requirement. The requirement is evaluated for the scaled transfer
function Do

–1T(s)Di. Do and Di are diagonal matrices formed from the
OutputScaling and InputScaling property, respectively.

For more information on how to interpret and use these properties, see the
reference pages for the Tuning Goals.

Option to remove stability constraint from loop-shape and
gain-limiting Tuning Goals
The new Stabilize property of loop-shaping and gain-limiting Tuning Goals
allows you turn off the implicit closed-loop stability constraint. If stability for

5

R2014a

the specified loop is not required or cannot be achieved, set Stabilize to
false to relax the stability constraint.

This property is available for the following Tuning Goals:

• TuningGoal.LoopShape

• TuningGoal.Gain, TuningGoal.WeightedGain

• TuningGoal.MinLoopGain,TuningGoal.MaxLoopGain

For more information on how to use the Stabilize property, see the reference
pages for the Tuning Goals.

ScalingOrder property added to TuningGoal.Margins
The TuningGoal.Margins tuning goal has a new property, ScalingOrder.
This property controls the number of states in the diagonal scalings involved
in computing MIMO stability margins. Increasing the order may improve
results at the expense of increased computations.

Previously, this scaling order was set as a tuning option in systuneOptions.

Compatibility Considerations

If you have scripts that use the ScalingOrder option of systuneOptions, set
the ScalingOrder property of TuningGoal.Margins instead.

Improved control system tuning of Simulink models
with systune or looptune functions using slTuner
interface (with Simulink Control Design)
Compatibility Considerations: Yes

Use the new slTuner interface for tuning control systems in Simulink models.
This interface replaces slTunable. The slTuner interface allows you to:

• Tune model blocks and subsystems to meet tuning goals using the systune
and looptune functions.

6

Improved control system tuning of Simulink® models with systune or looptune functions using slTuner interface (with
Simulink® Control Design™)

• Perform robust tuning of a controller against a set of plant models using
systune. You can configure an slTuner interface to vary model parameter
values and operating points. When you call systune for the interface, the
software returns a control system that satisfies the tuning goals for all the
specified model variations.

• Validate the controller design by examining the transfer function
for relevant I/O sets using the getIOTransfer, getLoopTransfer,
getSensitivity, and getCompSensitivity functions.

slTuner, similar in design to slLinearizer, simplifies I/O management in
the controller tuning and validation workflow. You specify signals of interest
as analysis points. You can use these analysis points to configure design
requirements and specify linearization inputs/outputs when you extract
transfer functions.

For more information on command-line tuning of Simulink models with
slTuner, see:

• “Programmatic Control System Tuning”

“Loop-Shaping Design”

Compatibility Considerations

The slTunable interface will continue to work for backward compatibility.
However, only the slTuner interface will be supported and enhanced in
future releases. Therefore, adoption of the slTuner interface is strongly
recommended.

For documentation of the slTunable interface, see slTunable in the R2013b
documentation.

7

http://www.mathworks.com/help/releases/R2013b/toolbox/slcontrol/ug/sltunableclass.html

R2013b

Version: 5.0

New Features: Yes

Bug Fixes: Yes

9

R2013b

Automatic tuning of gain-scheduled control systems
with systune and looptune commands

You can now use systune and looptune to automatically tune control systems
in which plant dynamics change with operating conditions or time. In such
gain-scheduled control systems, the controller gains vary as a function of
one or more scheduling variables. You parameterize the dependency of
controller gains on the scheduling variables. The software automatically
tunes the coefficients of that parametrization so that the control system
meets the tuning requirements you specify over the entire range of plant
operating conditions. The new gainsurf command helps you parametrize
your controller gains as functions of scheduling variables.

Several new examples illustrating the workflow for gain-scheduled tuning,
including:

• Tuning of Gain-Scheduled Three-Loop Autopilot

• Gain Scheduled Control Of a Chemical Reactor

For additional information about tuning gain-scheduled controllers, see
Gain-Scheduled Controllers.

Automatic tuning of discrete-time control systems
with systune and looptune commands

You can now use systune and looptune for automatic tuning of discrete-time
control systems. This capability includes both:

• Control systems represented by discrete-time generalized LTI models
(genss models with Ts property not equal to zero).

• Control systems represented by an slTunable interface to a Simulink
mode. Set the Ts property of the slTunable interface to the sampling time
at which you want to linearize the model.

To tune a discrete-time control system, use the same procedure and command
syntax and you use to tune a continuous-time control system. For examples
of discrete-time tuning, see:

10

http://www.mathworks.com/help/releases/R2013b/robust/ref/gainsurf.html
http://www.mathworks.com/help/releases/R2013b/robust/gs/tuning-of-gain-scheduled-three-loop-autopilot.html
examples/gain-scheduled-control-of-a-chemical-reactor.html
http://www.mathworks.com/help/releases/R2013b/robust/gain-scheduled-controller-tuning.html

Sensitivity, overshoot, minimum and maximum loop gain requirements for control system tuning with looptune and systune

• Digital Control of Power Stage Voltage

• MIMO Control of Diesel Engine

Sensitivity, overshoot, minimum and maximum loop
gain requirements for control system tuning with
looptune and systune

New TuningGoal requirement objects allow you to specify a variety of tuning
objectives for automated tuning of fixed-structure control systems with
systune and looptune. New tuning requirements include:

• TuningGoal.Sensitivity— Constraint on sensitivity to disturbance

• TuningGoal.Overshoot— Constraint on overshoot in step response

• TuningGoal.MinLoopGain— Minimum loop gain constraint

• TuningGoal.MaxLoopGain— Maximum loop gain constraint

Additionally, TuningGoal.LoopShape has two new syntaxes. These syntaxes
allow you to specify a target crossover frequency or range of crossover
frequencies for an open-loop response in your control system.

For more information about these TuningGoal requirement objects see the
reference pages for each requirement object, and:

• Using Design Requirement Objects

• Specifying Design Requirements for systune

• Performance and Robustness Specifications for looptune

looptuneSetup command for switching from looptune
to systune to use additional systune functionality

The new looptuneSetup command provides a bridge between the tuning
commands looptune and systune. looptuneSetup takes the argument list
for looptune and constructs an equivalent argument list for systune. The
looptuneSetup command is valid for systems represented in either MATLAB
or Simulink.

11

http://www.mathworks.com/help/releases/R2013b/robust/gs/digital-control-of-power-stage-voltage.html
http://www.mathworks.com/help/releases/R2013b/robust/gs/mimo-control-of-diesel-engine.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.sensitivityclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.overshootclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.minloopgainclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.maxloopgainclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.loopshapeclass.html
http://www.mathworks.com/help/releases/R2013b/robust/gs/using-design-requirement-objects.html
http://www.mathworks.com/help/releases/R2013b/robust/gs/performance-and-robustness-specifications-for-systune.html
http://www.mathworks.com/help/releases/R2013b/robust/gs/performance-and-robustness-specifications.html

R2013b

You can use this command to switch from looptune to systune to take
advantage of the additional flexibility and functionality of systune. For
example, looptune requires that you tune all channels of a MIMO feedback
loop to the same target bandwidth. Converting to systune allows you to
specify different crossover frequencies and loop shapes for each loop in
your control system. Also, looptune treats all tuning requirements as
soft requirements, optimizing them but not requiring that any constraint
be exactly met. Converting to systune allows you to enforce some tuning
requirements as hard constraints, while treating others as soft requirements.

You can also use looptuneSetup to probe into the tuning requirements
that looptune implicitly imposes. When you use looptune, you specify a
target loop bandwidth and stability margins. looptune expresses these
as hard and soft tuning constraints, specified as TuningGoal objects. You
can use looptuneSetup to examine these constraints. After examining the
constraints, you can then alter them and pass them to systune for further
tuning.

For more information, see the following reference pages:

• looptuneSetup

• slTunable.looptuneSetup

hinfnorm command for computing H• norm

The new hinfnorm command computes the H∞ norm of SISO or MIMO
systems. For SISO systems, the H∞ norm is defined as the largest value of the
frequency response magnitude. For MIMO systems, H∞ norm is the largest
singular value across frequencies.

For more information, see the hinfnorm reference page.

Some properties of TuningGoal requirements
renamed
Compatibility Considerations: Yes

The following properties of TuningGoal requirement objects are renamed to
better reflect their purpose and uses:

12

http://www.mathworks.com/help/releases/R2013b/robust/ref/looptunesetup.html
http://www.mathworks.com/help/releases/R2013b/slcontrol/ug/sltunable.looptunesetup.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/hinfnorm.html

Power iteration method option for structured singular value computation with mussv

Object Previous Property
Name

New Property Name

TuningGoal.LoopShape LoopTransfer Location

TuningGoal.Margins LoopTransfer Location

TuningGoal.Tracking ReferenceInput Input

TuningGoal.Tracking TrackingOutput Output

Compatibility Considerations

If you have scripts or functions that use any of these properties, consider
updating your code to use the new property names instead. Using the
previous property names does not generate an error in this release, but the
names might be removed in a future release.

Power iteration method option for structured
singular value computation with mussv
Compatibility Considerations: Yes

A new 'p' option to the mussv command allows you to specify a power iteration
method for computing the lower bound on structured singular values (μ
values). This method is recommended for cases of complex uncertainty. When
at least one of the uncertain blocks specified in the block diagonal matrix
structure is complex, mussv now uses the power iteration method by default.

For pure real uncertainty, mussv uses a gain-based lower bound algorithm by
default.

For more information, see the mussv reference page.

Compatibility Considerations

Previously, mussv used a gain-based lower bound algorithm for both pure real
and mixed uncertainty. Therefore, you might now obtain different results for
the lower bounds with mixed uncertainty.

13

http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.loopshapeclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.marginsclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.trackingclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.trackingclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/mussv.html

R2013b

Option to specify feedback sign for stability margin
calculation with ncfmargin
Compatibility Considerations: Yes

The ncfmargin command includes a new input argument that lets you specify
the sign of the feedback interconnection assumed for the margin calculation.
Use the syntax [marg,freq] = ncfmargin(P,C,sign) or [marg,freq]
= ncfmargin(P,C,sign,tol) to specify a negative or positive feedback
interconnection. For more information, see the ncfmargin reference page.

Compatibility Considerations

Previously, the relative accuracy tol was the third input argument
to ncfmargin. If you have scripts or functions that use the syntax
[marg,freq] = ncfmargin(P,C,tol), update them to use [marg,freq] =
ncfmargin(P,C,-1,tol) instead.

14

http://www.mathworks.com/help/releases/R2013b/robust/ref/ncfmargin.html

R2013a

Version: 4.3

New Features: Yes

Bug Fixes: Yes

15

R2013a

Minimum damping requirement for closed-loop poles
in TuningGoal.Poles object

You can now specify the minimum damping ratio of closed-loop poles for
automated tuning of fixed-structure control systems with systune or
looptune. To do so, create a TuningGoal.Poles object and set its MinDamping
property to the minimum damping ratio you want to specify. Additionally, you
can now use the Focus property to limit enforcement of the TuningGoal.Poles
requirements to poles within a specified frequency range.

For more information about the TuningGoal.Poles requirement, see the
TuningGoal.Poles reference page. For more information about using
requirement objects to tune control systems, see Using Design Requirement
Objects.

TuningGoal.Rejection object for specifying
disturbance rejection requirement

You can now specify a disturbance rejection requirement for automated
tuning of fixed-structure control systems with systune or looptune. The new
TuningGoal.Rejection object allows you to specify a frequency-dependent
attenuation factor for a disturbance injected at a specified location in the
control system.

For more information about the TuningGoal.Rejection requirement, see the
TuningGoal.Rejection reference page. For an example, see PID Tuning for
Setpoint Tracking vs. Disturbance Rejection.

For more information about using requirement objects to tune control systems
generally, see Using Design Requirement Objects.

looptune returns detailed results from multiple
random starts
Compatibility Considerations: Yes

The info output of looptune now includes detailed results from each
optimization run. When you use the RandomStart option of looptuneOptions
to perform multiple optimization runs, the field info.Runs of the info output

16

http://www.mathworks.com/help/releases/R2013a/robust/ref/tuninggoal.polesclass.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/using-design-requirement-objects.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/using-design-requirement-objects.html
http://www.mathworks.com/help/releases/R2013a/robust/ref/tuninggoal.rejectionclass.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/pid-tuning-for-setpoint-tracking-vs-disturbance-rejection.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/pid-tuning-for-setpoint-tracking-vs-disturbance-rejection.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/using-design-requirement-objects.html

Additional automated tuning examples

now contains a struct array. Each entry in the struct array includes results
from the corresponding optimization run such as minimum constraint values
and tuned block values. You can optionally use this information to analyze
independent optimization results.

See the looptune reference page for more information.

Compatibility Considerations

The Extra field of info is now renamed to Runs. If you use info.Extra in a
script, update your code to use info.Runs instead.

Additional automated tuning examples

New examples in this release include:

• Multi-Loop Control of a Helicopter

• Fault-Tolerant Control of a Passenger Jet

• Multi-Loop PID Control of a Robot Arm

17

http://www.mathworks.com/help/releases/R2013a/robust/ref/looptune.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/multi-loop-control-of-a-helicopter.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/fault-tolerant-control-of-a-passenger-jet.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/multi-loop-pid-control-of-a-robot-arm.html

R2012b

Version: 4.2

New Features: Yes

Bug Fixes: Yes

19

R2012b

systune command for multiobjective tuning with soft
and hard constraints

The new systune command allows automated tuning of fixed-structure
control systems to high-level tuning objectives.

To use systune, you specify tuning objectives such as reference tracking,
disturbance rejection, or stability margins. You can specify both soft
requirements (objectives) and hard requirements (constraints). systune
automatically tunes the parameters of your control system to meet the
requirements.

You can use systune to tune control systems modeled in either MATLAB
or Simulink.

For more information, see:

• Tuning Control Systems with SYSTUNE

• Tuning Control Systems in Simulink

• Automated Tuning

• The systune reference page

H2 performance, stability margin, pole location, and
disturbance rejection requirements

New TuningGoal requirement objects allow you to specify a variety of tuning
objectives for automated tuning of fixed-structure control systems with
systune and looptune. New tuning requirements include:

• TuningGoal.Margins — Tune to stability margin requirements by
specifying minimum gain and phase margins for any feedback loop in your
control system.

• TuningGoal.Poles — Constrain closed-loop dynamics of your control
system.

• TuningGoal.StableController— Constrain dynamics or ensure stability
of tunable elements.

20

http://www.mathworks.com/help/releases/R2012b/robust/ref/systune.html
http://www.mathworks.com/help/releases/R2012b/robust/gs/tuning-control-systems-with-systune.html
http://www.mathworks.com/help/releases/R2012b/robust/gs/tuning-control-systems-in-simulink.html
http://www.mathworks.com/help/releases/R2012b/robust/automated-tuning.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/systune.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.marginsclass.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.polesclass.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.stablecontrollerclass.html

Robust tuning of one controller against a set of plant models

• TuningGoal.WeightedGain — Limit on frequency-weighted gain from
specified inputs to specified outputs in your control system.

• TuningGoal.Variance and TuningGoal.WeightedVariance — Tune to
H2 performance requirements by minimizing or constraining variance
amplification. TuningGoal.Variance specifies the maximum output
variance for a unit-variance input signal from a specified input to a
specified output in your control system. TuningGoal.WeightedVariance
imposes a frequency-weighted variance amplification limit.

For more information about these TuningGoal requirement objects see the
reference pages for each requirement object, and:

• Using Design Requirement Objects

• Specifying Design Requirements for systune

• Performance and Robustness Specifications for looptune

Robust tuning of one controller against a set of plant
models

The new systune command can simultaneously tune the parameters of
multiple models or control configurations. This feature allows you, for
example, to tune a single controller against a range of plant models, to help
ensure that the tuned control system is robust against parameter variations.
As another example, you can tune for reliable control by simultaneously to
multiple plant configurations that represent different failure modes of a
system. In either case, systune finds values for tunable parameters that best
satisfy the specified tuning objectives for all models.

For more information, see Tune Controller Against Set of Plant Models.

Option to constrain tuned parameter values and to
restrict some tuning requirements to a frequency
band

You can now optionally impose lower and upper bounds on tunable parameters
when tuning fixed-structure control systems using systune, looptune, or

21

http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.weightedgainclass.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.varianceclass.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.weightedvarianceclass.html
http://www.mathworks.com/help/releases/R2012b/robust/gs/using-design-requirement-objects.html
http://www.mathworks.com/help/releases/R2012b/robust/gs/performance-and-robustness-specifications-for-systune.html
http://www.mathworks.com/help/releases/R2012b/robust/gs/performance-and-robustness-specifications.html
http://www.mathworks.com/help/releases/R2012b/robust/gs/tune-controller-against-set-of-plant-models.html

R2012b

hinfstruct. For example, you can constrain a gain to always be positive, or
impose a maximum value on a filter time constant.

To impose bounds on tunable parameters, set the Maximum and Minimum
properties of the parameter in the corresponding Control Design Block. For
example, create a scalar gain block and constrain the gain to be positive:

gainblock = ltiblock.gain('gainblock',1,1);
gainblock.Gain.Minimum = 0;

Then, use gainblock as a component in a tunable genss model of the control
system. When you tune the control system, the tuning command enforces
the constraint.

Additionally, you can limit the range of frequencies in which almost any
TuningGoal requirement is enforced for fixed-structure control system tuning
with systune or looptune. The only exceptions are TuningGoal.Variance
and TuningGoal.WeightedVariance.

For example, you can enforce a stability margin requirement in a frequency
band extending for one decade on each side of the target gain crossover
frequency.

To limit the range of frequencies in which a requirement is enforced, use the
Focus property of the TuningGoal requirement object. For example, create a
requirement that limits the gain from an input du to an output u to 10. Limit
enforcement of the requirement to the frequency range 10–1000 rad/s.

Req = TuningGoal.Gain('du','u',10);
Req.Focus = [10 1000];

ltiblock.pid2 and loopswitch objects for tuning
two-degree-of-freedom PID controllers and marking
loop opening sites for open-loop requirements

New Control Design Blocks in Control System Toolbox™ allow you to specify
more control structures and more types of constraints for fixed-structure
control system tuning in MATLAB:

• ltiblock.pid2— Tunable two-degree-of-freedom PID controller

22

TuningGoal.MaxGain and GainLimit property renamed

• loopswitch— Control Design Block for specifying feedback loop opening
locations in a tunable genss model of a control system

For more information, see the ltiblock.pid2 and loopswitch reference
pages.

TuningGoal.MaxGain and GainLimit property renamed
Compatibility Considerations: Yes

The tuning requirement TuningGoal.MaxGain is now called TuningGoal.Gain.
Additionally, the GainLimit property of that tuning requirement is now
called MaxGain.

For more information, see the TuningGoal.Gain reference page.

Compatibility Considerations

Replace instances of TuningGoal.MaxGain in your code with
TuningGoal.Gain. Replace references to the GainLimit property with
MaxGain.

Options in hinfstructOptions and looptuneOptions
renamed or removed
Compatibility Considerations: Yes

The following options in hinfstructOptions and looptuneOptions are
changed:

• SpecRadius is now called MaxFrequency. Additionally, NaN is no longer
a supported value for this option. For an unconstrained MaxFrequency
value, use Inf.

• StableOffset is now called MinDecay.

• StableRadius option has no effect.

• StableExclude option of hinfstructOptions has no effect. hinfstruct
now automatically excludes from stability tests Control Design Blocks

23

http://www.mathworks.com/help/releases/R2012b/control/ref/ltiblock.pid2.html
http://www.mathworks.com/help/releases/R2012b/control/ref/loopswitch.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.gainclass.html

R2012b

such as weighting functions or multipliers. These blocks do not affect the
closed-loop stability of the actual control system to tune.

For more information about these options, see the hinfstructOptions and
looptuneOptions reference pages.

Compatibility Considerations

If you use any of the affected options in your code, update your code to reflect
the current names and supported values.

24

http://www.mathworks.com/help/releases/R2012b/robust/ref/hinfstructoptions.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/looptuneoptions.html

R2012a

Version: 4.1

New Features: Yes

Bug Fixes: Yes

25

R2012a

Parallel Computing Support for looptune and
hinfstruct

If you have Parallel Computing Toolbox™ software installed, you can use
parallel computing to speed up tuning of fixed-structure control systems with
the looptune or hinfstruct commands. When you run multiple randomized
looptune or hinfstruct optimization starts, parallel computing speeds up
tuning by distributing the optimization runs among MATLAB workers.

For more information about using parallel computing to speed up looptune
or hinfstruct tuning, see:

• Speed Up Tuning with Parallel Computing Toolbox Software in the Robust
Control Toolbox™ documentation.

• The Robust Control Toolbox demo Using Parallel Computing to Accelerate
the Tuning Process.

For more information about tuning fixed-structure control systems with
looptune or hinfstruct, see Tuning Fixed Control Architectures in the
Robust Control Toolbox documentation.

Faster and More Accurate H-infinity Norm
Computation Using SLICOT Algorithms

H∞ norm calculations now use the SLICOT library of numerical algorithms.
These algorithms improve the speed and accuracy of functions such as
hinfstruct and looptune.

For more information about the SLICOT library, see http://slicot.org.

26

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/btc3qyp.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/bsxd__3.html
http://slicot.org/

R2011b

Version: 4.0

New Features: Yes

Bug Fixes: Yes

27

R2011b

looptune Tunes Fixed-Structure Control Systems

Use looptune to tune fixed-structure control systems to meet your
requirements. To use looptune, specify design requirements such as
loop bandwidth, stability margin, setpoint tracking, or target loop shape.
looptune automatically tunes the parameters of your controller to meet the
specified requirements.

The requirements objects TuningGoal.MaxGain, TuningGoal.Tracking, and
TuningGoal.LoopShape let you express your design requirements directly.
You do not have to first convert them to weighting functions or mathematical
constraints on an optimization problem.

You can use loopview to validate the performance the performance of the
tuned control structure against your specified design requirements.

For more information, see Tuning Fixed Control Architectures and the
looptune and loopview reference pages.

Control System Tuning for Simulink Models with
looptune or hinfstruct Using slTunable Interface

If you have Simulink Control Design software, you can use tuning commands,
such as slTunable.looptune and hinfstruct, to tune control systems
modeled in Simulink. The slTunable object provides an interface between
your Simulink model and these commands.

Use slTunable to specify information about your control structure and
parametrization. slTunable also automates tasks such as linearizing the
Simulink model, parametrizing the tunable blocks of your system, and
applying tuned parameter values to the model. After you create and configure
an slTunable object for your control architecture, you can tune the control
system using slTunable.looptune or hinfstruct.

For more information, see Tuning Fixed Control Architectures and the
following demos:

• Tuning of a Digital Motion Control System

28

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/looptune.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/tuninggoal.maxgainclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/tuninggoal.trackingclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/tuninggoal.loopshapeclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/loopview.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/bsxd__3.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/looptune.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/loopview.html
http://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/sltunable.looptune.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/hinfstruct.html
http://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/sltunableclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/bsxd__3.html

wcgainplot for Visualizing Worst-Case Gains

• Decoupling Controller for a Distillation Column

• Tuning of a Two-Loop Autopilot

• Tuning of Cascaded PID Loops

• Loop Shaping Design with HINFSTRUCT

• Fixed-Structure Autopilot for a Passenger Jet

wcgainplot for Visualizing Worst-Case Gains

wcgainplot plots the nominal, sampled, and worst-case gains of uncertain
systems as a function of frequency. Use wcgainplot for visual analysis of
uncertain systems.

For more information, see the wcgainplot reference page.

Functionality Being Removed or Changed
Compatibility Considerations: Yes

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

umat object can no
longer contain ultidyn
or udyn uncertainty.

• Presence of
ultidyn or udyn
uncertain elements
forces model type to
uss or ufrd rather
than umat.

• Mixing ureal or
ucomplex models
with udyn or
ultidyn objects

Expect a model type
of uss or ufrd instead
of umat when working
with udyn or ultidyn
uncertain elements.

Update code to work
with uss or ufrd
instead of umat when
udyn or ultidyn
elements are present.

29

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/wcgainplot.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/umat.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/ultidyn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/udyn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/uss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/ufrd.html

R2011b

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

produces uss
instead of umat.

uss(sys_frd), where
sys_frd is a frd
model object no longer
converts sys_frd to
ufrd.

Errors. ufrd(sys_frd). Replace
uss(sys_frd) with
ufrd(sys_frd).

ufrd(udat,freq,...)
no longer constructs an
uncertain frd model
from the umat object
udat.

Converts udat to
a ufrd object with
frequencies freq.

Use
frd(udat,freq,...)
to construct an
uncertain frd model
from the umat object
udat.

Replace
ufrd(udat,freq,...)
with
frd(udat,freq,...).

frd(sys_uss,w)
where sys_uss is a
uss model.

Warns; returns frd
model containing data
based on nominal
response of sys_uss.

ufrd(sys_uss,w) to
obtain a ufrd model.

Replace
frd(sys_uss,w) with
ufrd(sys_uss,w).

Nominal value of
ultidyn object.

Nominal value is ss
model object.

None. Update code to
work with ss model
objects when working
nominal value of
ultidyn.

Applied to array of
uncertain models,
default substitution is
'-once'.

Use '-batch' to
perform batch
substitution on
uncertain model
arrays.

Replace
usubs(...) with
usubs(...,'-batch').

usubs.

usubs(M,{a1;a2;...},
{v1;v2;...}) returns
error.

usubs(M,a1,v1,a2,
v2,...).

Replace
usubs(M,{a1;a2;...},
{v1;v2;...}) with
usubs(M,a1,v1,a2,
v2,...).

30

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/frd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/ufrd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/usubs.html

Functionality Being Removed or Changed

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

usample(sys,'a',na,
'b',nb) where
uncertain element
b does not exist in sys.

Returns na-by-nb
array with constant
values across nb
dimension, instead
of na-by-1 array.

None. Update code to
reflect correct
dimensionality.

wcgopt. Still runs. wcgainOptions or
wcmarginOptions.

Replace wcgopt with
wcgainOptions or
wcmarginOptions.

For ufrd models,
BadUncertainValues
field of Info output
returns Nf-by-1 struct
array, where Nf is the
number of frequency
points.

None. Update code to
work with Nf-by-1
struct array for
BadUncertainValues
instead of Nf-by-1 cell
array.

robuststab and
robustperf.

For nominally
unstable models,
performance margin
is zero (instead of a
negative value).

None. Update code to reflect
correct performance
margin .

robopt. Still runs. robuststabOptions
or
robustperfOptions.

Replace robopt with
robuststabOptions
or
robustperfOptions.

actual2normalized. First output argument
is normalized
uncertain block
value. The second
output argument is
normalized distance
between block value
and nominal value.

[NV,ndist] =
actual2normalized(
BLK,AV).

Use second output
argument ndist for
normalized distance.

31

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/wcgainoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/wcmarginoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/robuststab.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/robustperf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/robuststaboptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/robustperfoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/actual2normalized.html

R2011b

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

reshape(unc_sys,S). S does not include the
I/O size of the models
in the array unc_sys.
For example, if
unc_sys is a 6-by-1
array of 2-output,
4-input models,
reshape(unc_sys,[2
3]) converts unc_sys
to a 2-by-3 array.

None. Remove I/O size
dimensions from
reshape on uncertain
model arrays.

diag(uss_sys) where
uss_sys is a uss
model.

Errors. None. Remove
diag(uss_sys).

32

R2011a

Version: 3.6

New Features: Yes

Bug Fixes: Yes

33

R2011a

Enhanced Workflow for H-Infinity Synthesis of
Fixed-Structure Control Systems

New Generalized LTI models in Control System Toolbox allow you to model
control systems with tunable parameters. Using these models simplifies
controller tuning with hinfstruct. You can model a closed-loop transfer
function, including tunable parameters, as a generalized state-space (genss)
model and directly tune the parameters to minimize the closed-loop gain. The
hinfstruct command can tune any fixed-structure SISO or MIMO control
system using H∞ synthesis techniques.

Additionally, new realp and genmat objects let you create parametric
expressions. You can use such expressions to create custom tunable
components. For example, you can define a low-pass filter parametrized by
its cutoff frequency, or an observer-based controller parametrized by the
state-feedback and observer gains.

For more information about creating tunable Generalized LTI models, see
Models with Tunable Coefficients in the Control System Toolbox User’s Guide.

For more information about H∞ tuning with hinfstruct, see Tuning Fixed
Control Architectures in the Robust Control Toolbox Getting Started Guide.

For examples of designing controllers for several different architectures using
hinfstruct, see the following updated and new demos:

• Loop Shaping Design with HINFSTRUCT (updated)

• Tuning of a Two-Loop Autopilot (updated)

• Decoupling Controller for a Distillation Column (updated)

• Multi-Loop PID Control of a Robot Arm (updated)

• Fixed-Structure Autopilot for a Passenger Jet (new)

34

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxmvii
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/hinfstruct.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/genss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/realp.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/genmat.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bsuyqal.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/bsxd__3.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/bsxd__3.html

R2010b

Version: 3.5

New Features: Yes

Bug Fixes: Yes

35

R2010b

New Commands for H-Infinity Synthesis of
Fixed-Structure Control Systems

New commands in this release allow you to tune fixed-structure SISO and
MIMO control systems using the techniques of H∞ synthesis.

The new hinfstruct command lets you use the frequency-domain methods of
H∞ synthesis to tune control systems with a broad range of architectures and
controller structures. For example, you can tune:

• Fixed-order, fixed-structure controllers, such as pure gains, PID controllers,
or fixed-order transfer function or state-space models

• Single feedback-loop architectures with multiple tunable elements, such as
a PID controller plus a filter

• Multiple feedback-loop architectures with multiple tunable elements

Specify the tunable elements of your system using the new parametrized
Control Design blocks ltiblock.gain, ltiblock.pid, ltiblock.tf, and
ltiblock.ss.

For examples of designing controllers for several different architectures using
hinfstruct, see the following new demos:

• Loop Shaping Design with HINFSTRUCT

• Tuning of a Fixed-Structure Autopilot

• Decoupling Controller for a Distillation Column

• Multi-Loop PID Control of a Robot Arm

For more information, see Tuning Fixed Control Architectures in the Robust
Control Toolbox Getting Started Guide.

36

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/hinfstruct.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.gain.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.pid.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.tf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.ss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/bsxd__3.html

R2010a

Version: 3.4.1

New Features: No

Bug Fixes: Yes

37

R2009b

Version: 3.4

New Features: Yes

Bug Fixes: Yes

39

R2009b

New Option to Improve Robust Performance by
Accounting for Real Uncertain Parameters

You can now improve robust performance by accounting for real uncertain
parameters when designing controllers using µ-synthesis. The user-defined
options you use in the dksyn command now includes a new option MixedMU.
Set this option to 'on' to account for real uncertain parameters in your
system. For more information, see the dkitopt, and dksyn reference pages.

New Command to Linearize Simulink Models with
Uncertainty

If you have Simulink Control Design software installed, you can take model
uncertainty into account when linearizing a Simulink model. You can then
use the resulting uncertain linearized model (uss object) to perform linear
analysis and robust control design.

If your model already contains Uncertain State Space blocks, use the new
ulinearize command to obtain an uss model. If you want to account for
uncertainty in your linear analysis without using Uncertain State Space
blocks, you can specify individual Simulink blocks to linearize to an uncertain
variable. For more information, see "Computing Uncertain State-Space
Models from Simulink Models" in the Robust Control Toolbox User’s Guide.

New Interface for Simulating Effects of Uncertainty
in Simulink Models

This version of the product provides a new interface to simulate the effects of
uncertainty in Simulink models. The interface includes the following:

• Uncertain State Space block to specify uncertain system in Simulink.
You should replace USS System blocks in your existing models with the
Uncertain State Space block. To do so, run the slupdate command on
your models.

• ufind command to extract all uncertain variables from a Simulink model.

• usample command to generate random values of these uncertain variables.

40

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/dkitopt.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/dksyn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/ufind.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/usample.html

New Command to Model Multiple LTI Responses as One Uncertain System

For more information on simulating the effects of uncertainty using the new
interface, see "Simulating Effects of Uncertainty" in the Robust Control
Toolbox User’s Guide.

New Command to Model Multiple LTI Responses as
One Uncertain System

This version of the product includes a new ucover command that lets
you model a family of LTI responses as one uncertain system. For more
information, see the ucover reference page.

New and Updated Demos

The following new and updated demos illustrate use of the new features:

• "Control of Spring-Mass-Damper Using Mixed mu-Synthesis" shows use of
the new MixedMU option and dksyn command for mixed-mu synthesis.

• "Linearization of Simulink Models with Uncertainty" shows how to
compute uncertain state-space models using ulinearize and Simulink
Control Design software.

• "Robustness Analysis in Simulink" uses the new interface for simulating
effects of uncertainty in Simulink models.

• "Simultaneous Stabilization Using Robust Control" and "Modeling a Family
of Responses as an Uncertain System" show use of the ucover command.

• "First-Cut Robust Design" shows use of the usample, ucover and dksyn
commands.

To access the demos, type

demo('toolbox','robust control')

Functions, Properties and Blocks Being Removed

41

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/ucover.html

R2009b

Compatibility Considerations: Yes

Function,
Property or
Block Name

What Happens When
You Use Function or
Property? Use This Instead

Compatibility
Considerations

usiminfo Still runs ufind See “New Interface for
Simulating Effects of
Uncertainty in Simulink
Models” on page 40.

usimfill Still runs ufind See “New Interface for
Simulating Effects of
Uncertainty in Simulink
Models” on page 40.

usimsamp Still runs usample See “New Interface for
Simulating Effects of
Uncertainty in Simulink
Models” on page 40.

USS System
block

Still runs Uncertain State
Space block

See “New Interface for
Simulating Effects of
Uncertainty in Simulink
Models” on page 40.

ltiarray2uss Still runs ucover See “New Command to Model
Multiple LTI Responses as One
Uncertain System” on page 41.

42

R2009a

Version: 3.3.3

New Features: No

Bug Fixes: Yes

43

R2008b

Version: 3.3.2

New Features: No

Bug Fixes: Yes

45

R2008a

Version: 3.3.1

New Features: Yes

Bug Fixes: No

47

R2008a

Ability to Use LOOPMARGIN with Simulink

This version of Robust Control Toolbox software lets you analyze the
robustness of nonlinear Simulink models using the LOOPMARGIN command.

If you have the Simulink Control Design product installed, you can perform
stability margin analysis of a Simulink model by passing the model name and
a point within that model to the LOOPMARGIN command.

48

R2007b

Version: 3.3

New Features: No

Bug Fixes: No

No New Features or Changes

49

R2007a

Version: 3.2

New Features: Yes

Bug Fixes: No

51

R2007a

New Simulink Blocks

• USS System — This Robust Control Toolbox version introduces a new
Simulink block, USS System. You can use this block to import uncertain
systems into Simulink models.

• Multiplot Graph — Plot multiple signals in one figure.

52

R2006b

Version: 3.1.1

New Features: Yes

Bug Fixes: No

53

R2006b

New Function ltiarray2uss

This Robust Control Toolbox version introduces a new function, ltiarray2uss.
This function constructs an uncertain state-space model from an LTI array.

54

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/ltiarray2uss.html

R2006a

Version: 3.1

New Features: No

Bug Fixes: No

No New Features or Changes

55

R14SP3

Version: 3.0.2

New Features: No

Bug Fixes: No

No New Features or Changes

57

R14SP2

Version: 3.0.1

New Features: Yes

Bug Fixes: No

59

R14SP2

mussvunwrap Is Renamed

mussvunwrap has been renamed. It is now called mussvextract.

New Functions actual2normalized and
normalized2actual

This Robust Control Toolbox version introduced two new functions:

• actual2normalized — Calculate normalized distance between nominal
value and given value for uncertain atom.

• normalized2actual— Convert value for atom in normalized coordinates
to corresponding actual value.

60

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/mussvextract.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/actual2normalized.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/normalized2actual.html

	toc
	R2014a
	Control System Tuner app for automated tuning of control systems
	Step response and LQG requirements for control system tuning wit
	Improvements to TuningGoal requirements for control system tunin
	Tuning Goals for constraining dynamics impose implicit stability
	Option to limit dynamics constraint to poles in a particular fee
	TuningGoal.Tracking allows specification of peak error
	Specification of signal scaling in MIMO closed-loop Tuning Goals
	Option to remove stability constraint from loop-shape and gain-l
	ScalingOrder property added to TuningGoal.Margins

	Improved control system tuning of Simulink models with systune o

	R2013b
	Automatic tuning of gain-scheduled control systems with systune
	Automatic tuning of discrete-time control systems with systune a
	Sensitivity, overshoot, minimum and maximum loop gain requiremen
	looptuneSetup command for switching from looptune to systune to
	hinfnorm command for computing H∞ norm
	Some properties of TuningGoal requirements renamed
	Power iteration method option for structured singular value comp
	Option to specify feedback sign for stability margin calculation

	R2013a
	Minimum damping requirement for closed-loop poles in TuningGoal.
	TuningGoal.Rejection object for specifying disturbance rejection
	looptune returns detailed results from multiple random starts
	Additional automated tuning examples

	R2012b
	systune command for multiobjective tuning with soft and hard con
	H2 performance, stability margin, pole location, and disturbance
	Robust tuning of one controller against a set of plant models
	Option to constrain tuned parameter values and to restrict some
	ltiblock.pid2 and loopswitch objects for tuning two-degree-of-fr
	TuningGoal.MaxGain and GainLimit property renamed
	Options in hinfstructOptions and looptuneOptions renamed or remo

	R2012a
	Parallel Computing Support for looptune and hinfstruct
	Faster and More Accurate H-infinity Norm Computation Using SLICO

	R2011b
	looptune Tunes Fixed-Structure Control Systems
	Control System Tuning for Simulink Models with looptune or hinfs
	wcgainplot for Visualizing Worst-Case Gains
	Functionality Being Removed or Changed

	R2011a
	Enhanced Workflow for H-Infinity Synthesis of Fixed-Structure Co

	R2010b
	New Commands for H-Infinity Synthesis of Fixed-Structure Control

	R2010a
	R2009b
	New Option to Improve Robust Performance by Accounting for Real
	New Command to Linearize Simulink Models with Uncertainty
	New Interface for Simulating Effects of Uncertainty in Simulink
	New Command to Model Multiple LTI Responses as One Uncertain Sys
	New and Updated Demos
	Functions, Properties and Blocks Being Removed

	R2009a
	R2008b
	R2008a
	Ability to Use LOOPMARGIN with Simulink

	R2007b
	R2007a
	New Simulink Blocks

	R2006b
	New Function ltiarray2uss

	R2006a
	R14SP3
	R14SP2
	mussvunwrap Is Renamed
	New Functions actual2normalized and normalized2actual

